Kode Talenta/Kode Fakultas : 06/08

**Menyasar SDGs No : 6** 

## LAPORAN AKHIR **PENELITIAN TALENTA USU** SKEMA KOLABORASI NASIONAL WCU (World Class University)



Pengembangan Magnet dari Logam Transisi (Co dan Ni) Berbahan Baku Lokal untuk Material Pembersih Air Limbah Logam Berat

Ketua Peneliti

: Dr. Martha Rianna, S.Si Anggota Peneliti : Prof. Dr. Timbangen Sembiring, M.Sc (NIDN. 0023126203) Dr. Drs. Syahrul Humaidi, M.Sc

(NIDN. 0021039303) (NIDN. 0017066501)

Dibiayai oleh: Universitas Sumatera Utara Tahun Anggaran 2022 sesuai dengan Kontrak Penelitian Nomor: 11119.1/UN5.1.R/PPM/2022, tanggal 08 Agustus 2022

# FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM **UNIVERSITAS SUMATERA UTARA MARET 2023**

# Halaman Pengesahan Laporan Akhir PENELITIAN KOLABORASI NASIONAL PENERIMA DANA HIBAH WCU

#### Judul

#### Pelaksana

a. Nama b. NIDN/NIDK/NIP c. Jabatan Fungsional d. Fakultas / Unit e. Alamat Kantor/Telp/Faks Anggota Tim Pelaksana a. Jumlah Anggota b. Anggota Peneliti (1) 1. Nama Lengkap 2. NIP / NIDN 3. Jabatan/Golongan 4. Unit c. Anggota Peneliti (2) 1. Nama Lengkap 2. NIP / NIDN 3. Jabatan/Golongan

4. Unit Tahun Pelaksanaan Biaya Penelitian

KEBUD

Pengembangan Magnet dari Logam Transisi (Co dan Ni) : Berbahan Baku Lokal untuk Material Pembersih Air Limbah Logam Berat

- : Dr. Martha Rianna, S.Si
- 0021039303
- Fakultas Matematika Dan Ilmu Pengetahuan Alam
- : Jl. Bioteknologi No. 1 Kampus USU, Medan
- : Dosen 2 orang
- : Prof. Dr. Timbangen Sembiring, M.Sc.
- 0023126203
- : Guru Besar

:

- : Fakultas Matematika Dan Ilmu Pengetahuan Alam
- : Dr. Drs. Syahrul Humaidi, M.Sc.
- : 0017066501
- : Lektor Kepala
- : Fakultas Matematika Dan Ilmu Pengetahuan Alam
- : 2022
- : Rp. 80.000.000

Medan, 12 April 2023 Ketua Tim Pengusul,

Dy Martha Rianna, S.Si

NIP. 199303212019092001

Menyetujui Lembaga Penelitian Sekretaris,

Prof. Dr. Syafruddin Ilyas, M.Biomed NIP. 196602091992031003

© Sistem Informasi Penelitian Universitas Sumatera Utara

Mengetahui

M.Si.

Mulva.

01997021002

B BUM Wakil Dekan 3.

usu.ac.id/researches/2374/confirmation/download

# DAFTAR ISI

| LEMBAR PENGESAHAN                                        | 1  |
|----------------------------------------------------------|----|
| DAFTAR ISI                                               | 2  |
| RINGKASAN                                                | 3  |
| BAB 1. PENDAHULUAN                                       | 4  |
| 1.1.Latar Belakang                                       | 4  |
| 1.2. Rumusan Masalah                                     | 4  |
| 1.3.Tujuan Khusus                                        | 5  |
| 1.4. Urgensi Penelitian                                  | 5  |
| BAB 2. TINJAUAN PUSTAKA                                  | 6  |
| 2.1 Magnetik Ferit Spinel Ferit                          | 6  |
| 2.2 Pasir Alam                                           | 7  |
| 2.2 Roadmap Penelitian                                   | 8  |
| BAB 3. METODE PENELITIAN                                 | 9  |
| 3.1. Alat dan Bahan                                      | 10 |
| 3.2. Diagram Alir Penelitian                             | 11 |
| 3.3. Susunan Organisasi Tim Pengusul dan Pembagian Tugas | 12 |
| BAB 4. HASIL DAN PEMBAHASAN                              | 13 |
| 4.1 Analisis X-Ray Diffraction (XRD)                     | 13 |
| 4.2 Analisis Scanning Electron Microscopy – FE (FE-SEM)  | 14 |
| 4.3 Analisis Vibrating Sample Magnetometer (VSM)         | 15 |
| 4.4 Atomic Adsorption Spectrofotometric (AAS) 17         |    |
| BAB 5. KESIMPULAN                                        | 19 |
| DAFTAR PUSTAKA                                           | 20 |
| LAMPIRAN-LAMPIRAN                                        | 22 |
| Artikel Ilmiah                                           | 22 |
|                                                          |    |

#### RINGKASAN

Perkembangan teknologi sudah semakin canggih terutama inovasi dalam pembuatan material khususnya material nanomagnetik. Berbagai inovasi pembuatan material magnetik terus dikembangkan seperti bahan material magnetik permanen berbasis material ferit. Disamping itu, Indonesia memiliki bahan alam yang melimpah ruah terkhusus pada kesediaan pasir alam di sungai maupun di pantai. Pada penelitian ini akan dibuat pengembangan magnet dari logam transisi (Co dan Ni) dengan bahan baku pasir alam untuk material penyerap air limbah logam berat. Penelitian ini bertujuan untuk memanfaatkan limbah menjadi produk material baru yang bernilai ekonomis tinggi, ramah lingkungan dan membuka peluang bisnis baru bagi industri, serta meningkatkan daya saing bidang teknologi sesuai dengan RENSTRA USU 2020-2029. Penambahan cobalt dan nickel di pasir alam diharapkan dapat memberikan struktur kubik spinel dan sifat parameter magnetik yang memiliki koersivitas tinggi sehingga dapat diaplikasikan dalam pengujian limbah logam berat. Cobalt klorida, nikel klorida dan pasir besi alam digunakan sebagai prekursor utama untuk pembuatan magnet dengan formula rumus  $Co_{1-x}Ni_xFe_2O_4$  x=( 0-0.3) %. Temperatur pembakaran dilakukan sebesar 900°C dengan penahanan 2 jam. Pengaruh variasi rasio molar pada prekursor akan diuji. Pengujian yang dilakukan yaitu dari struktur menggunakan pengujian XRD, SEM-EDX, struktur kimia dan sifat magnetik menggunakan pengujian FTIR dan VSM. Efektifitas magnet tersebut akan diuji dalam serapan logam berat menggunakan pengujian AAS. Tema penelitian ini sesuai dengan salah satu tujuan rencana aksi global atau Sustainable Development Goals (SDGs) yang keenam yaitu menjamin ketersediaan serta pengelolaan air bersih dan sanitasi yang berkelanjutan untuk semua. Hasil penelitian yang diharapkan dapat membuat material magnetik serta dapat dipublikasikan dalam 1 Jurnal Internasional Bereputasi Q1 Materials Science and Energy Technology dan luaran tambahan dalam 1 Procceding Internasional Bereputasi.

Kata kunci : Magnetik ferit, Co1-xNixFe2O4, Limbah Logam Berat

#### **BAB 1**

#### PENDAHULUAN

#### 1.1 Latar Belakang

Peningkatan inovasi dalam pembuatan bahan material magnetik terus berkembang. Bahan material magnetik dapat menunjukkan hasil sifat listrik dan magnet dikenal sebagai ferit. Oksida besi dan oksida logam adalah penyusun utama ferit (Gupta et al. 2020). Bahan magnetik ferit mengisolasi oksida magnetik di alam dan memiliki resistivitas listrik yang tinggi, arus eddy yang rendah dan kerugian dielektrik, magnetisasi saturasi tinggi, permeabilitas tinggi, dan permitivitas sedang (Ansari, Bigham, and Ahangar 2019). Ferit merupakan bahan oksida magnetik dan bersifat semikonduktor (Šutka and Gross 2016; Yelenich et al. 2015). Bahan material magnetik ferit sangat penting secara teknologi karena material ini memiliki sifat listrik dan magnet yang menarik untuk diteliti (Anu 2017). Material ferit dikelompokkan menjadi tiga yaitu spinel ferit, heksagonal ferit dan garnet. Adapun aplikasi dari pembuatan material magnetik ferit ini sebagai berikut, pada inti transformator, batang antena, perangkat memori, media perekam magnetik kepadatan tinggi, magnet permanen, transduser, penggerak, penyerap gelombang mikro, penyerap logam berat, degredasi limbah, perangkat teknologi komputer dan sebagainya (Ginting et al. 2020; Reddy and Yun 2016; Rianna et al. 2019a; Si et al. 2017).

Pasir alam merupakan salah satu bahan baku pendukung membuat magnet-ferit. Bahan baku ferit magnet yang beredar di Indonesia adalah hampir 100% diimpor dari luar negeri, sementara bahan baku dari besi pasir yang memiliki konten Fe hingga 70-80% belum digunakan secara optimal. Baru-baru ini, penggunaan bahan-bahan magnetik untuk menyerap gelombang elektromagnetik telah menarik perhatian. Bahan-bahan yang berbasis ferit sangat efektif untuk menyerap *ultrahigh* frekuensi seperti radar frekuensi dalam kisaran frekuensi GHz (Rianna et al. 2019b). Pasir besi mengandung mineral besi dengan konsentrasi yang cukup tinggi, dapat dilihat pasir besi menempel pada magnet permanen (Chakradhary, Ansari, and Akhtar 2019) dan limbah logam berat (Abdolmohammad-Zadeh, Ayazi, and Veladi 2022).

Penggunaan pewarna sintesis yang terdapat pada tekstil, sektor pangan dan pertanian merupakan sumber utama pencemaran organik berdampak pada kesehatan bagi manusia. Pada Provinsi Sumatera Utara cakupan sanitasi mencapai 56.47% dari total Penduduk Sumatera Utara 12.985.075 (SP2010) atau 7.332.671 jiwa. Sistem Instalasi Pengolahan Air Limbah (IPAL) untuk black water dan grey water, IPAL Cemara dengan kapasitas 60.000 m<sup>3</sup>/hari pada pengolahan limbah cair sampai tahun 2012 baru tercapai 20.000 m<sup>3</sup>/hari [Perda No. 10 thn 2009 Sistem Penyaluran Air Limbah Terpusat di kelola oleh BUMD PDAM Tirtanadi]. Kondisi ini diperlukan solusi material teknologi yang bermanfaat dalam membersihkan limbah salah satunya yaitu mengembangkan magnet berbasis logam transisi dari bahan baku lokal.

Dalam penelitian ini akan dibuat bahan material magnetik ferit  $Co_xNi_{1-x}Fe_2O_4 x = (0-0,3)$ %mol dengan temperatur kalsinasi sebesar 900°C dengan metode co-presipitasi yang disintesa dari pasir alam. Pengujian yang dilakukan yaitu dari sifat struktur menggunakan pengujian XRD, SEM- EDS, FTIR, untuk mengetahui sifat magnetik menggunakan pengujian VSM dan pengujian AAS untuk mengetahui besar logam berat yang diserap. Penelitian ini bertujuan untuk memanfaatkan limbah menjadi produk material baru yang bernilai ekonomis tinggi, ramah lingkungan dan membuka peluang bisnis baru bagi industri, serta meningkatkan daya saing bidang teknologi sesuai dengan RENSTRA USU 2020-2029. Tema penelitian ini sesuai dengan salah satu tujuan rencana aksi global atau *Sustainable Development Goals* (SDGs) yang keenam yaitu menjamin ketersediaan serta pengelolaan air bersih dan sanitasi yang berkelanjutan untuk semua. Penambahan cobalt dan nickel di pasir alam diharapkan dapat memberikan struktur kubik spinel dan sifat parameter magnetik yang memiliki koersivitas tinggi sehingga dapat diaplikasikan dalam pengujian limbah logam berat.

# 1.2 Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah :

- 1. Bagaimana struktur bahan magnetik material  $Co_xNi_{1-x}Fe_2O_4 x = (0-0,3)$  %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi ?
- 2. Bagaimana morfologi bahan magnetik material  $Co_xNi_{1-x}Fe_2O_4 x = (0-0,3)$  %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi ?
- 3. Bagaimana sifat bahan magnetik material ferit  $Co_xNi_{1-x}Fe_2O_4 x = (0-0,3)$  %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi ?

# 1.3 Tujuan Khusus

Tujuan khusus dalam penelitian ini adalah :

- 1. Mengetahui struktur bahan magnetik material  $Co_xNi_{1-x}Fe_2O_4 x = (0-0,3)$  %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi.
- 2. Mengetahui morfologi bahan magnetik material  $Co_x Ni_{1-x}Fe_2O_4 x = (0-0,3)$  %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi.
- 3. Mengetahui sifat magnetik sifat bahan magnetik material ferit Co<sub>x</sub>Ni<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> x= (0-0,3) %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi.

# 1.4 Urgensi Penelitian

Urgensi penelitian ini adalah memberikan informasi dari sifat-sifat bahan magnetik material ferit  $Co_xNi_{1-x}Fe_2O_4 x = (0-0,3)$  %mol dengan temperatur kalsinasi sebesar 900°C menggunakan metode co-presipitasi dan mampu mempublikasikan hasil penelitian tersebut pada Jurnal Internasional Bereputasi di Q1 South African Journal of Chemical Engineering. Rencana target luaran penelitian ini adalah sebagai berikut.

| No. | Jenis Luaran                                           | Nama jurnal, Nama<br>Konfrensi/Jenis KI,<br>Judul Buku Ajar |
|-----|--------------------------------------------------------|-------------------------------------------------------------|
|     | Luaran Wajib                                           |                                                             |
|     |                                                        | Materials Science and                                       |
| 1.  | Publikasi artikel di jurnal internasional              | Energy Technology                                           |
| 2.  | Publikasi artikel di jurnal nasional terakreditasi     | -                                                           |
| 3.  | Hak Kekayaan Intelektual                               | -                                                           |
| 4.  | Publikasi artikel di prosiding internasional terindeks | _                                                           |
|     | Luaran tambahan                                        |                                                             |
| 1.  | Publikasi artikel di prosiding internasional           |                                                             |
|     | terindeks                                              | AIP Proceeding                                              |
| 2.  | Publikasi artikel di prosiding nasional                | -                                                           |
| 3.  | Hak Kekayaan Intelektual                               | -                                                           |
| 4.  | Produk/TTG/model/karya seni                            | _                                                           |
| 5.  | Buku ajar                                              | -                                                           |

Tabel 1. Rencana Target Luaran

### **BAB 2**

## TINJAUAN PUSTAKA

#### 2.1 Material Magnetik Spinel Ferit

Magnetik spinel ferit memiliki sifat fisis dan kimia yang bervariasi dan dapat diaplikasikan dalam berbagai bidang teknologi dan industri (Naseri et al. 2014). Salah satu partikel magnetik tersebut yang dapat dijadikan berukuran nanometer adalah besi oksida seperti Fe<sub>3</sub>O<sub>4</sub> (magnetit) (Yang, Fu, and Fu 2020). Fe<sub>3</sub>O<sub>4</sub> merupakan salah satu fase dari oksida besi yang bersifat amfoter (kemampuan suatu zat yang dapat berpindah sifat keasaman dari asam ke sifat basa) dan memiliki daya serap yang tinggi. Magnetit (Fe<sub>2</sub>O<sub>4</sub>) merupakan salah satu mineral golongan besi oksida yang memiliki sifat megnetik paling kuat di alam dengan struktur kristal berbentuk kubus seperti Gambar 1.



Gambar 1. Struktur kristal Fe<sub>3</sub>O<sub>4</sub> (Wang et al. 2019)

Perubahan ukuran partikel magnetit Fe<sub>3</sub>O<sub>4</sub> akan mempengaruhi sifat-sifat yang dimilikinya. Daftar sifat fisika dan kimia dari bahan magnetit (Fe<sub>3</sub>O<sub>4</sub>) di sajikan pada tabel 2.3. Tabel 2. Sifat Fisika dan Kimia Magnetit Fe<sub>3</sub>O<sub>4</sub>

|   | I abel 2. Shat Fisika ua                                                                                                                                                                                                          | an | Kinna Magnetit 16504                                             |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------|
| _ | Sifat Fisika                                                                                                                                                                                                                      |    | Sifat Kimia                                                      |
|   | Warna : Hitam                                                                                                                                                                                                                     |    | Rumus Kimia : Fe <sub>3</sub> O <sub>4</sub>                     |
|   | Kilau : kusam                                                                                                                                                                                                                     |    | unsur yang terkandung : Fe, O                                    |
|   | Kristal magnetit tidak tembus pandang<br>(buram)<br>Struktur kristal spinel<br>Tingkat kekerasan 681-792 kg/mm <sup>2</sup><br>Kepadatan : 5,2 gr/cm <sup>3</sup><br>Temperatur Curie (Tc) = 575 <sup>0</sup> -585 <sup>0</sup> C | •  | Unsur pengotor (impuritas) : Mn, Mg, Zn,<br>Ni, Cr, Ti, V dan Al |
|   |                                                                                                                                                                                                                                   |    |                                                                  |

Fe<sub>3</sub>O<sub>4</sub> berukuran nano memiliki sifat ferimagnetik dan memiliki peluang aplikasi luas. Dalam pengaplikasianya Fe<sub>3</sub>O<sub>4</sub> yang berukuran partikel nano merupakan alternatif yang diperlukan untuk memenuhi kebutuhan bahan baku indutri di bidang elektronik. Seperti aplikasi pada bidang industri berukuran nanopartikel adalah pada keramik, sebgai katalis, *energi storage, magnetic data storage,* ferofluida,(Dayana et al. 2019). Agar dapat diaplikasikan dalam berbagai bidang tersebut, sangatlah penting untuk mempertimbangkan ukuran partikel, sifar magnetik, dan sifat permukaan dari partikel nano itu sendiri. Rumus kimia magnetit (Fe<sub>3</sub>O<sub>4</sub>) sering ditulis dalam bentuk FeO.Fe<sub>2</sub>O<sub>3</sub> dimana satu bagian adalah wustite (FeO) dan bagian lainnya adalah hematit (Fe<sub>2</sub>O<sub>3</sub>) (Bengtson, Morgan, and Becker 2013). Selain itu magnetit mempunyai struktur kristal spinel dengan sel unit kubik yang terdiri dari 32 ion oksigen, dimana celah-celahnya ditempati oleh ion Fe<sup>2+</sup> dan ion Fe<sup>3+</sup> (Rianna et al. 2019b). Kristal magnetik Fe<sub>3</sub>O<sub>4</sub> dengan struktur spinel dapat dilihat dari Gambar 2.



Gambar 2. Struktur Spinel Magnetit (Fe<sub>3</sub>O<sub>4</sub>) (Kumar et al. 2018)

Nanokomposit ZnFe<sub>2</sub>O<sub>4</sub>/MnO<sub>2</sub> merupakan material magnetik bersifat ferit spinel yang memiliki sifat elektrik, optik, magnetik, dan katalis. Spinel ferit memiliki struktur AB<sub>2</sub>O<sub>4</sub> dimana A dan B merupakan kisi tetrahedral dan octahedral dan oksigen (O) sebagai anion. Ferit spinel nanopartikel dengan formula MFe<sub>2</sub>O<sub>4</sub> (M= Ni, Zn, Mn, Co, Mg) memiliki struktur fcc (Dehghan, Kakavandi, and Kalantary 2018). Sifat ferit spinel yang memiliki stabilitas kimia yang baik, kekerasan mekanik, koersivitas dan saturasi yang rendah sehingga baik diaplikasikan dalam degradasi air limbah dimana air limbah memiliki banyak logam berat (Kechrakos 2016).

# 2.2 Pasir Alam

Indonesia memiliki sumber pasir alam melimpah dan dapat dimanfaatkan menjadi bahan baku pembuatan manganese ferrite. Pasir alam adalah endapan pasir yang mengandung partikel besi (magnetik), yang terdapat di sepanjang pantai, terbentuk karena proses penghancuran oleh cuaca, air permukaan dan gelombang terhadap batuan asal yang mengandung mineral besi seperti magnetit, limenit, oksida besi, kemudian terakumulasi serta tercuci oleh gelombang air laut. Terdapat tiga jenis bahan baku besi yang terdapat di Indonesia, antara lain bijih besi primer, besi laterit dan pasir alam. Dari ketiga jenis bahan baku besi tersebut, pasir alam merupakan yang terbesar dengan cadangan sebesar 2121 juta ton. Hal tersebut jauh lebih banyak dibandingkan potensi bijih besi primer sebesar 881,8 juta ton dan bijih besi laterit sebesar 1778,4 juta ton. Sehingga, pemanfaatan pasir alam sebagai bahan baku pembuatan besi dan baja merupakan salah satu solusi atas permasalahan masih kecilnya produksi besi dan baja dalam negeri. Sama halnya dengan bijih besi primer, pasir alam dapat diolah menggunakan metode reduksi langsung. Saat ini, pengolahan pasir alam untuk pembuatan besi dan baja sudah diterapkan secara komersil di New Zealand bagian utara (Abdul, 2018). Pasir alam ini biasannya berwarna abu-abu gelap atau kehitaman, berbutir sangat halus dengan ukuran antara 75-150 mikron, densitas 2-5 gr/cm3, bobot isi (Specific Gravity, SG) 2,99-4,23 g/cm3, dan derajat kemagnetan (MD) 6,40-27, 16%. Secara umum pasir alam terdiri dari mineral yang bercampur dengan butiran- butiran mineral seperti kuarsa, kalsit, felspar, amfibol, piroksen, biotit dan turmalin. Pasir alam terutama berasal dari batuan basaltic dan andesitic volanik. Pembentukan endapan pasir alam ditentukan oleh beberapa faktor antara lain batuan asal, proses perombakan, media transportasi, proses serta tempat pengendapannya. Sumber mineral endapan pasir alam pantai. Sebagian besar dari batuan gunung api bersifat andesit-basal (Hilman, 2014) Dalam ukuran nano, spinel ferit memiliki sifat ferromagnetik yang kuat sehingga memiliki peluang besar dalam bidang sensor magnet dan juga pada bidang industri elektronik. Riset pengolahan pasir alam di Indonesia saat ini telah banyak dilakukan, bahkan karakteristik dari pasir alam sudah diketahui, namun penelitian ini masih terus dilakukan guna memanfaatkan deposit pasir alam yang melimpah di Indonesia. Besi dan baja

adalah produl yang banyak dihasilkan dari pasir alam, tetapi jika diproduksi menjadi magnet dan penyerap logam limbah, memiliki nilai ekonomi yang jauh lebih tinggi (Siregar, 2018).

## 2.3 Roadmap Penelitian

Roadmap penelitian ini adalah sebagai berikut.



Gambar 3. Roadmap Penelitian

# BAB 3 METODE PENELITIAN

# 3.1 Alat dan Bahan

Alat-alat yang digunakan dalam karakterisasi dan pembuatan sampel uji dapat dilihat pada Tabel 3.

| i abei 5. Alat-alat yang digunakan pada penentian |                                 |                  |                          |  |  |
|---------------------------------------------------|---------------------------------|------------------|--------------------------|--|--|
| No                                                | Nama Alat                       | Spesifikasi      | Merek                    |  |  |
| 1                                                 | Gelas Beaker                    | 500 ml           | Pyrex                    |  |  |
| 2                                                 | Spatula                         | -                | -                        |  |  |
| 3                                                 | Mortar dan alu porselin         | -                | -                        |  |  |
| 4                                                 | Neraca analitik                 | (presisi ±0.0001 | Vibra                    |  |  |
|                                                   |                                 | g)               |                          |  |  |
| 5                                                 | Bola-bola stainlees steel       |                  |                          |  |  |
| 6                                                 | Aluminium voile                 | -                | -                        |  |  |
| 7                                                 | Shaker Milling                  | 0-1200 rpm       | -                        |  |  |
| 8                                                 | Furnace                         | 700°C-1300 °C    | KSL-1700X                |  |  |
| 9                                                 | Aoutomatic Axial Hydrolic Press | -                | -                        |  |  |
| 10                                                | Magnetic Stirrer                | -                | -                        |  |  |
| 11                                                | Ayakan (Sieve-shaker)           | 200 mesh         | Tantalum 3N8             |  |  |
|                                                   |                                 |                  | purity                   |  |  |
| 12                                                | Hotplate                        | -                | IKA C-MAG                |  |  |
| 13                                                | Kertas pH                       | -                | -                        |  |  |
| 14                                                | Cruisible                       | 100 ml           | Germany                  |  |  |
| 15                                                | Magnet Batang                   | -                | -                        |  |  |
| 16                                                | Kertas Saring                   |                  | Whatmann No. 40          |  |  |
| 17                                                | Alat uji XRD                    | -                | Shimadzu 600             |  |  |
| 17                                                | Alat SEM EDX                    | -                | Model Zeiss dan          |  |  |
|                                                   |                                 |                  | JEOL 6510LV              |  |  |
| 18                                                | Alat AAS                        | -                | DELSA <sup>tm</sup> Nano |  |  |
|                                                   |                                 |                  | Series                   |  |  |
| 19                                                | Alat Uji Morfologi              |                  | FE-SEM                   |  |  |
| 20                                                | Alat uji Magnetik               | -                | VSM                      |  |  |
|                                                   |                                 |                  |                          |  |  |

**Tabel 3.** Alat-alat yang digunakan pada penelitian

Bahan-bahan yang digunakan dalam penelitian ini dapat dilihat pada Tabel 4.

Tabel 4. Bahan dasar penelitian

| No | Nama Produk               | Nama Produk Rumus Kimia                       |        | Produksi |
|----|---------------------------|-----------------------------------------------|--------|----------|
| 1  | Pasir Alam                | Fe <sub>2</sub> O <sub>3</sub>                | 90 %   | Alam     |
|    |                           |                                               |        |          |
| 2  | Cobalt Klorida            | CoCl <sub>2</sub>                             | 99,9 % | Merck    |
|    |                           |                                               |        |          |
| 3  | Nickel Klorida            | NiCl <sub>2</sub>                             | 99,9%  | Merck    |
|    |                           |                                               |        |          |
| 4  | Aquadest                  | -                                             | -      | -        |
| 5  | Asam Hidroklorat (37%)    | HCl                                           | -      | Merck    |
| 6  | Ethanol                   | C <sub>2</sub> H <sub>5</sub> OH              | 96%    | Merck    |
| 7  | Natrium hidroksida (NaOH) | NaOH                                          | 90 %   | Merck    |
| 8  | Toluene                   | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> | 99.9%  | Merck    |

#### 3.2 Diagram Alir Penelitian

Metode yang dilakukan dalam penelitian ini adalah eksperimental menggunakan metode co-presipitasi. Penelitian ini akan dilakukan di Laboratorium Material Magnetik, Pusat Material Maju, Badan Riset dan Inovasi Nasional (BRIN) Serpong. Adapun diagram alir penelitian sebagai berikut.



Gambar 4. Diagram alir pengolahan pasir alam

Gambar 4 menunjukkan hasil tambang yang diperoleh akan disortir sebanyak lima kali dengan menggukan magnet permanen bertujuan untuk memisahkan pasir alam dengan kerikil-kerikil kecil yang ukut tertarik pada saat penambangan. Setelah itu hasil yang diperoleh diayak dengan ayakan 100 mesh guna diperoleh pasir alam murni. Hasil ayakan 100 mesh tersebut akan di milling dengan *Planetary Ball milling* selama 15 jam yang bertujuan untuk menghaluskan pasir alam. Hasil milling selama 15 jam tersebut berbentuk powder halus yang kemudian dimasukkan kedalam oven dengan tujuan untuk menghilangkan kadar air yang masih terkandung didalam pasir alam. Kemudian gerus hasil powder tersebut sehingga menghasilkan serbuk pasir alam.

Sintesis Co<sub>x</sub>Ni<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> x=( 0-0,3) %mol dengan temperatur kalsinasi sebesar 900°C dengan metode co-presipitasi yang disintesa dari pasir alam untuk material pembuatan magnet permanen dengan prekursor CoCl<sub>2</sub>, NiCl<sub>2</sub> dan pasir alam. Preparasi sampel Fe dari bahan pasir alam yaitu timbang pasir alam sesuai konsentrasi masing-masing dan campurkan ke dalam HCl (37%), kemudian stir dengan magnet stirrer selama 30 menit, suhu kamar diperlihatkan pada Gambar 5. Kemudian larutan pasir alam di saring menggunakan kertas saring Whatmann 40 biarkan selama 3 jam.



Gambar 5. Diagram alir penelitian

Larutan pasir alam yang tersaring menghasilkan FeCl<sub>3</sub>. Masukkan aquadest ke gelas beaker, kemudian timbang dahulu CoCl<sub>2</sub>, NiCl<sub>2</sub> dan campurkan ke dalam gelas beaker tersebut beserta larutan FeCl<sub>3</sub>. Lalu stir di magnet stirrer dengan kecepatan 500 rpm seperti pada Gambar 5 suhu kamar sampai larutan homogen, angkat jika larutan sudah homogen. Sampel di keringkan dalam oven selama 15 jam dengan suhu 100°C sehingga terbentuk serbuk. Serbuk di haluskan menggunakan mortar. Serbuk di haluskan menggunakan mortar. Serbuk di haluskan menggunakan mortar 2 jam dengan laju pemanasan/pendinginan sebesar 10°C/menit menggunakan Furnace KSL-1700X.

| No | Nama/NIDN/NIP                                                       | Fakultas/Unit                                                     | Bidang             | Uraian Tugas                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|---------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                     |                                                                   | Ilmu               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1  | Dr. Martha Rianna, S.Si<br>NIDN. 0021039303                         | MIPA/Fisika                                                       | Fisika<br>Material | <ul> <li>Merancang secara detail<br/>prosedur penelitian dan<br/>membagi tugas kepada<br/>timpeneliti.</li> <li>Mengkordinir dan<br/>mengarahkan anggota<br/>penelitian dalam<br/>menyelesaikan tugas<br/>masing-masing.</li> <li>Membantu menganalisis<br/>dataXRD, FESEM-EDS.</li> <li>Menganalisis data hasil<br/>penelitian secara<br/>menyeluruh.</li> <li>Mengevaluasi<br/>keseluruhanhasil<br/>penelitian beserta<br/>luarannya</li> </ul> |
| 2  | Prof. Dr. Timbangen<br>Sembiring, M.Sc<br>NIDN. 0023126203          | MIPA/Fisika                                                       | Fisika<br>Material | <ul> <li>Mengkordinir mahasiswa sebagai anggota pembantu penelitian dalam membuat sampel magnet</li> <li>Menganalisis hasil FTIR dan VSM.</li> <li>Membuat draft publikasi ke jurnal internasional.</li> <li>Membantu membuat laporanpenelitian</li> </ul>                                                                                                                                                                                        |
| 3  | Dr. Drs. Syahrul Humaidi,<br>M.Sc                                   | MIPA/Fisika                                                       | Fisika<br>Material | <ul> <li>✓ Menganalisis hasil XRD<br/>dan AAS</li> <li>✓ Membuat draft publikasi ke<br/>jurnal internasional.</li> <li>✓ Membantu membuat<br/>laporanpenelitian</li> </ul>                                                                                                                                                                                                                                                                        |
| 4  | Prof. Perdamean<br>Sebayang, M.Si<br>NIP.<br>19550105198303100<br>3 | Pusat Material<br>Maju/ Badan<br>Riset dan<br>Inovasi<br>Nasional | Fisika<br>Material | <ul> <li>✓ Menganalisis hasil FTIR<br/>dan VSM.</li> <li>✓ Membuat draft publikasi<br/>kejurnal internasional.</li> <li>✓ Membantu membuat<br/>laporanpenelitian</li> </ul>                                                                                                                                                                                                                                                                       |

# 3.3 Susunan Organisasi Tim Pengusul dan Pembagian Tugas

# BAB 4 HASIL DAN PEMBAHASAN

Telah selesai pembuatan sintesis nanopartikel magnetik  $Co_{1-x}Ni_xFe_2O_4$  dengan variasi x = 0,1; 0,2; 0,3 dengan metode co-presipitasi. Pada proses pembuatan nanopartikel  $Co_{1-x}Ni_xFe_2O_4$ , serbuk yang dihasilkan berwarna hitam kecoklatan. Serbuk yang dihasikal dari sintesis kemudian di karakterisasi dengan, *X-ray Diffraction* (XRD) menunjukkan analisa struktur dan ukuran kristal, *Scaning Electron Microscopy* (SEM) menunjukkan ukuran nanopartikel dan komposisi penyusun unsur, *Vibrating Sample Magnetometer* (VSM) menunjukkan analisa sifat magnet, dan *Atomic Adsorption Spectrofotometric* (AAS) menunjukkan analisa penyerapan limbah logam berat.



Gambar 4.1: (1) Endapan magnet Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> mendapat respon terhadap medan magnet luar, dan (2) gambar endapan yang telah dikeringan akan menjadi serbuk

## 4.1 Analisis X-Ray Diffraction (XRD)

*X-Ray Diffraction* menghasilkan identifikasi struktur kristalin dari sampel nanopartikel magnetik Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>. Panjang gelombang ( $\lambda$ ) sinar X yang digunakan adalah 1,54056 Å. Selanjutnya data yang didapat diolah menggunakan *software Origin 2018*. Sehingga diperoleh grafik seperti yang ditampilkan pada gambar 4.2 berikut:



Gambar 4.2 Spektrum XRD dari nanopartikel magnetik Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>

Pada grafik bisa dilihat bahwa pada gambar 4.2 menampilkan puncak-puncak difraksi dari sampel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> telah dilengkapi indeks miller (*hkl*) pada sampel. Puncak-puncak difraksi yang muncul pada sampel termasuk dari indeks miller khas struktur spinel. Hasil karakteristik XRD menampilkan jika nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> mempunyai puncak utama pada daerah  $2\theta$  sekitar 35,50° merupakan puncak bidang (311). Berdasarkan pola XRD pada ketiga sampel nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> variasi x= 0,1; 0,2; dan 0,3, memperlihatkan bahwa *Cobalt Nickel Ferrite* (Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>) yang memiliki struktur kristal kubik. Berdasarkan *Joint Committee on Powder Diffraction Standars* (JCPDS) puncak-puncak lain yang teridentifikasi dalam sampel material Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> secara berurut adalah bidang (200), (400), (511), dan (440). Hal ini membuktikan bahwa sampel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> mengkristal cukup baik.

# 4.2 Analisis Scanning Electron Microscopy – FE (FE-SEM)

Pengujian SEM dilakukan untuk melihat ukuran nanopartikel pada serbuk Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>. Analisa SEM juga dibuat untuk mengetahui komposisi unsur penyusun sampel nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>. Hasil analisa SEM dengan variasi x=0,1 ; x=0,2 ; x=0,3 memperlihatkan bahwa ukuran partikel masing-masing sebesar 38,94 nm, 42,80 nm, dan 24,16 nm. Hasil dari gambar dapat diperlihatkan oleh gambar di bawah ini, yang menunjukkan bahwa sampel memiliki ukuran partikel yang berbeda-beda dan mengalami alglomerasi yang dipengaruhi oleh pH dan endapan dari nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>.





Gambar 4.3 (a) Morfologi sampel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> X=0,1 ; (b) Morfologi sampel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> X=0,2 ; (c) Morfologi sampel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> X=0,3

# 4.3 Analisis Vibrating Sample Magnetometer (VSM)

Agar bisa mengetahui sifat kemagnetan pada nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> maka dilakukan analisis dengan penggunaan alat VSM. Pada kurva histerisis akan memuat data dari sifat kemagnetan yang diperoleh dari koersivitas (jHc), magnetisasi saturasi ( $\sigma s$ ), magnetisasi remanen ( $\sigma r$ ), dan koersivitas eksternal (Hext). Gambar dan tabel menunjukkan hasil pengujian VSM Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> dengan variasi X= 0,1; 0,2; dan 0,3. Kurva Histerisis nanopartikel magnetik Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> variasi X= 0,1; X= 0,2; dan X= 0,3.



Gambar 4.5 Kurva Histerisis Co1-xNixFe2O4

Tabel 4.1 Hasil analisa kurva histerisis Co1-xNixFe2O4

| Sampel (x) | Ms (emu/g) | Hc (Oe) | Mr (emu/g) |
|------------|------------|---------|------------|
| 0.1        | 39.07      | 709.89  | 13.01      |
| 0.2        | 37.60      | 551.01  | 11.52      |
| 0.3        | 34.49      | 621.35  | 10.83      |

Hasil sifat magnetik dari hasil pengujin VSM diperlihatkan pada tabel 4.1 yang menunjukkan bahwa terjadi peningkatan dan penurunan nilai koersivitas pada sampel nanopartikel  $Co_{1-x}Ni_xFe_2O_4$  hal ini diperkirakan telah terjadinya aglomerasi (penggumpalan) pada serbuk dan penggerusan pada sampel yang kurang maksimal. Sifat kemagnetan suatu bahan bergantung pada kristalinitas, ukuran partikel dan adanya fasa sekunder (pengotor). Semakin tinggi nilai koersivitasnya maka semakin tinggi sifat kemagnetannya. Berdasarkan tabel 4.1 Pada nilai magnetisasi saturasi nilai sampel x=0,3 memiliki nilai saturasi paling kecil diakibatkan adanya fasa hematit. Hematit bersifat antiferomagnetik sehingga nilai saturasinya berkurang. Nilai koersivitas terendah diperoleh oleh sampel x=0.2 dikarenakan sampel ini memiliki ukuran kristalit paling kecil sehingga cenderung memiliki domain magnetik tungga dan paling cenderung bersifat superparamagnetik. Nilai remanensi sampel x=0.1 paling tinggi dikarenakan adanya hematit sehingga momen magnetiknya sulit untuk disearahkan. Dan pada tabel 4.1 mengidentifikasikan bahwa seluruh sampel bersifat *hard magnetic* 

## 4.4 Atomic Adsorption Spectrofotometric (AAS)

Serbuk nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> dengan variasi x = 0,1; 0,2, dan 0,3 pada pengujian ini akan di gunakan untuk menyerap limbah logam berat. Logam berat yang digunakan adalah ion timbal (Cr3+) dan (Cu2+). Serbuk logam berat (Cr3+) dan (Cu2+) terlebih dahulu di larutkan dengan Aquades hingga menjadi larutan. Kemudian serbuk nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> dicampur dengan larutan logam berat (Cr3+) dan (Cu2+)untuk di shaker selama 30 menit. Hasil pencampuran yang berupa cairan tersebut dianalisisuntuk mengetahui seberapa besar daya serap (adsorpsi) nanopartikel Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> terhadap limbah logam berat (Cr3+) dan (Cu2+) di Laboratorium Teknologi Lingkungan Gedunga Geostech 820, Kawasan Puspipek serpong – Tangerang Selatan. Berikut ini laporan hasil uji.

| Sampel Konsentrasi Konsentrasi |                 | Konsentrasi Ion | Removal        | Kapasitas       |
|--------------------------------|-----------------|-----------------|----------------|-----------------|
|                                | Total Cr (mg/L) | Cr Total        | Efficiency (%) | Adsorpsi (mg/g) |
|                                |                 | Terserap (mg/L) |                |                 |
| X= 0,1                         | 22,5            | 0,84            | 96,26          | 10,83           |
| X= 0,2                         | 22,5            | 3,48            | 84,53          | 9,51            |
| X= 0,3                         | 22,5            | <0,03           | 99,86          | 11,23           |

Hasil Analisa AAS pada sampel Co1-xNixFe2O4

Grafik pengaruh mol Ni<sup>2+</sup> dengan kapasitas adsorpsi pada Co1-xNixFe2O4



Gambar 2 : Grafik pengaruh mol Ni2+ dengan kapasitas adsorpsi pada Co1-xNixFe2O4

Dapat dilihat pada tabel 1 dan gambar 2 bahwa efisiensi dan kapasitas adsorpsi terbesar terjadi pada sampel x = 0,3 yaitu 99,86 % dan 11,23 mg/g. Hal ini karena berkaitan dengan sifat kemagnetan sampel Co1-xNixFe2O4. Pada variasi sampel x = 0,3 memiliki nilai saturasi yang tinggi, nilai remanen paling kecil, namun nilai koersivitas terkecil kedua, hal ini dikarenakan pada sampel x = 0,1 terdapat fasa pengotor yang dapat mengakibatkan nilai koersivitasnya rendah.

# BAB 5. KESIMPULAN

- 1. Telah berhasil dilakukan sintesis nanopartikel  $Co_{0.7}Ni_{0.3}Fe_2O_4$  x= 0,3 melalui metode co-presipitasi.
- 2. Sifat magnetik material  $Co_{0.7}Ni_{0.3}Fe_2O_4$  hard magnet hal ini dapat dilihat bahwa hasil yang didapat 621.35 Oe.
- 3. Morfologi pada serbuk Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> memperlihatkan bahwa ukuran partikel masing-masing sebesar 38,94 nm, 42,80 nm, dan 24,16 nm.
- 4. Struktur kristal  $Co_{0.7}Ni_{0.3}Fe_2O_4$  menunjukkan struktur kristal kubik, serta fase utama terdeteksi dengan sedikit pengotor atau unsur lain pada pola difraksinya.
- 5. Daya serap pada sampel x=0,3 didapat kapasitas adsorpsi besar yaitu 99,86 % dan 11,23 mg/g. Hal ini karena berkaitan dengan sifat kemagnetan sampel  $Co_{0.7}Ni_{0.3}Fe_2O_4$ . Pada sampel x=0,3 memiliki nilai saturasi yang tinggi, nilai remanen paling kecil, namun nilai koersivitas kecil.

### **DAFTAR PUSTAKA**

- Abdolmohammad-Zadeh, Hossein, Zahra Ayazi, and Mahsa Veladi. 2022. "One-Pot Synthesis of Nickel Oxide/Nickel Ferrite Nanocomposite and Application to Dispersive Magnetic Solid-Phase Extraction of Zinc(II) Ions in Water and Milk Samples." *Journal of Food Composition and Analysis*.
- Ansari, Mohammad, Ashkan Bigham, and Hossein Abbastabar Ahangar. 2019. "Super-Paramagnetic Nanostructured CuZnMg Mixed Spinel Ferrite for Bone Tissue Regeneration." *Materials Science and Engineering C*.
- Anu. 2017. International Journal of Nanotechnology and Applications Magnetic and Dielectric Studies on Zn Doped Mg Ferrites (MgZn x Fe 2-x O 4) Nanofabricated Using Self-Combustion Method.
- Bengtson, Amelia, Dane Morgan, and Udo Becker. 2013. "Spin State of Iron in Fe3O4 Magnetite and H-Fe3O4." *Physical Review B Condensed Matter and Materials Physics* 87(15).
- Chakradhary, Vishal K., Azizurrahaman Ansari, and M. Jaleel Akhtar. 2019. "Design, Synthesis, and Testing of High Coercivity Cobalt Doped Nickel Ferrite Nanoparticles for Magnetic Applications." *Journal of Magnetism and Magnetic Materials*.
- Dayana, Indri et al. 2019. "The Effect of Tetraethyl Orthosilicate (TEOS) Additions as Silica Precursors on the Magnetite Nano-Particles (Fe3O4) Properties for the Application of Ferro-Lubricant." *Journal of Molecular Liquids* 294.
- Dehghan, Samaneh, Babak Kakavandi, and Roshanak Rezaei Kalantary. 2018. "Heterogeneous Sonocatalytic Degradation of Amoxicillin Using ZnO@Fe3O4 Magnetic Nanocomposite: Influential Factors, Reusability and Mechanisms." *Journal of Molecular Liquids* 264: 98–109.
- Ginting, Masno et al. 2020. "Effect of Co and Ni Additions as Doping Materials on the Micro-Structures and the Magnetic Properties of Barium Hexa-Ferrites." *Case Studies in Thermal Engineering*.
- Gupta, Nishesh Kumar et al. 2020. "Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) Nanoparticles at Neutral PH." *Scientific Reports*.
- Kechrakos, Dimitris. 2016. "Magnetic Nanoparticle Assemblies." In Handbook of Nanophysics: Nanoparticles and Quantum Dots,.
- Kumar, Rajesh, Rajesh K. Singh, Andrei V. Alaferdov, and Stanislav A. Moshkalev. 2018. "Rapid and Controllable Synthesis of Fe3O4 Octahedral Nanocrystals Embedded-Reduced Graphene Oxide Using Microwave Irradiation for High Performance Lithium-Ion Batteries." *Electrochimica Acta* 281: 78–87.
- Naseri, Mahmoud Goodarz et al. 2014. "A Comprehensive Overview on the Structure and Comparison of Magnetic Properties of Nanocrystalline Synthesized by a Thermal Treatment Method." *Journal of Physics and Chemistry of Solids* 75(3): 315–27.
- Reddy, D. Harikishore Kumar, and Yeoung Sang Yun. 2016. "Spinel Ferrite Magnetic Adsorbents: Alternative Future Materials for Water Purification?" *Coordination Chemistry Reviews*.
- Rianna, Martha et al. 2019a. "Effect of Calcination Temperature on Microstructures, Magnetic Properties, and Microwave Absorption on BaFe 11.6 Mg 0.2 Al 0.2 O 19 Synthesized from Natural Iron Sand." *Case Studies in Thermal Engineering* 13.
  - —. 2019b. "Effect of Calcination Temperature on Microstructures, Magnetic Properties, and Microwave Absorption on BaFe 11.6 Mg 0.2 Al 0.2 O 19 Synthesized from Natural Iron Sand." *Case Studies in Thermal Engineering*.
- Si, Conghui et al. 2017. "Mesoporous Nanostructured Spinel-Type MFe2O4 (M = Co, Mn, Ni) Oxides as Efficient Bi-Functional Electrocatalysts towards Oxygen Reduction and Oxygen Evolution." *Electrochimica Acta*.
- Šutka, Andris, and Karlis A. Gross. 2016. "Spinel Ferrite Oxide Semiconductor Gas Sensors." Sensors and Actuators, B: Chemical.

- Wang, Kuang et al. 2019. "Photothermal Performance of MFe2O4 Nanoparticles." Chinese Chemical Letters.
- Yang, Lei, Qi Fu, and Heqing Fu. 2020. "Preparation of Novel Hydrophobic Magnetic Fe3O4/Waterborne Polyurethane Nanocomposites." *Journal of Applied Polymer Science* 137(15).
- Yelenich, O. V., S. O. Solopan, J. M. Greneche, and A. G. Belous. 2015. "Synthesis and Properties MFe2O4 (M = Fe, Co) Nanoparticles and Core-Shell Structures." *Solid State Sciences*.

# Lampiran

Artikel Ilmiah sudah Accepted di Materials Science and Energy Technologies, Q1 Elsevier



## Artikel Ilmiah

# Evaluation of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> on Structural, Morphological, and Magnetic Properties as a Heavy Metal Absorbent in Cu, Cr

Martha Rianna<sup>1\*</sup>, Aknes Talanda<sup>1</sup>, Yoga Pratama<sup>1</sup>, Syahrul Humaidi<sup>1</sup>, Eko Arief Setiadi<sup>2</sup>,

Anggito P. Tetuko<sup>2</sup>, Lukman Faris Nurdiyansah<sup>2</sup>, Timbangen Sembiring<sup>1</sup>, Perdamean Sebayang<sup>2</sup>

<sup>1</sup>Universitas Sumatera Utara, Medan, 20155, Indonesia

<sup>2</sup>Research Center for Advanced Materials, National Research and Innovation Agency (BRIN),

Tangerang Selatan, Banten, 15314, Indonesia

\*corresponding author: martharianna@usu.ac.id

#### Abstract

Progressively more complex technological advancements have been made, particularly with the invention of ferrite material manufacture. In this evaluation, the co-precipitation method was used to assess the structure, morphological, and magnetic characteristics of cobalt nickel ferrite for heavy metal adsorbent in Cu, and Cr material. Synthesized cobalt nickel ferrite of Co0.7Ni0.3Fe2O4 was analyzed structurally and morphologically using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), and its room temperature hysteresis loops were measured using a vibrating sample magnetometer (VSM). Atomic absorption spectroscopy was then used to determine the metal content (AAS). XRD study that the six peaks and well-defined reflection planes of (220), (311), (400), (422), (511), and (400) at the 20 values of 30.12°, 35.57°, 43.29°, 53.71°, and 62.72° and there is no secondary phase in cobalt-nickel ferrite. FE-SEM results confirmed the spherical shape of the ferrite nanoparticle. The average particle size of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> is found with a range of 80 to 120 nm. The peaks of Fe, Ni, Co, and O elements as energy dispersive x-ray (EDX) spectra studied the ratio of the chemical composition of metal ions (Co: Ni) and iron to oxygen (Fe:O), The magnetic properties from VSM results evaluated that Ms of 34.46 emu/g, Mr of 14.91 emu/g, Hc of 671.58 Oe, independently. Correspondingly, AAS results from a removal efficiency of 99.86 % with capacity adsorption of 11.23 mg/L of Co0.7Ni0.3Fe2O4.

Keywords: Cobalt Nickel Ferrite, Natural Iron Sand, Magnetic Properties

## 1. Introduction

The production of magnetic materials is becoming increasingly innovative. Ferrites are magnetic materials that have both electrical and magnetic characteristics. The primary components of ferrite are metal oxides and iron oxides [1]. Because they have intriguing electrical and magnetic properties, ferrite magnetic materials like cobalt and nickel are crucial for technology. [2], [3]. Recent studies from Debnath et al [4] synthesized cobalt nickel ferrite with the addition of polyvinyl pyrrolidone (PVP) using a heat treatment method. The sample was heat a furnace for 3 h at 700°C. These results show average particle increases with cobalt as doping. Whereas

magnetic properties are reduced as increased cobalt as doping. Ni-CO spinel ferrite synthesis with hydrothermal method has been conducted with doping Ce-Dy rare earth as co-doping [5]. Adding co-doping in Co-Ni has increased magnetic parameters and energy band gap. The influence of co-doping materials caused structural, morphology, magnetic, electrical, and optical properties [6]–[8]. Correspondingly, natural iron sand is one of the main precursors for making ferrite magnetic materials. A previous study, making hexagonal ferrite magnetic materials from natural iron sand has been carried out for microwave absorption materials [9]. Natural iron sand contains iron minerals with a high enough concentration, it can be seen that iron sand and ferrite nanoparticle material are attached to a permanent magnetic material [3] and heavy metal waste [10].

In this research, ferrite magnetic material Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> will be made with a calcination temperature of 700°C for 1 h using the co-precipitation method which is synthesized from natural iron sand. The characterizations carried out are structural properties using XRD and FESEM-EDS. To determine magnetic properties using VSM, then to determine the number of heavy metals absorbed using AAS, respectively.

#### 2. Materials and Methods

In this study, the synthesis of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> used the coprecipitation method. CoCl<sub>2</sub>, NiCl<sub>2</sub>, and natural iron sand are the main precursors. Firstly, 2 g of iron sand was dissolved in 30 ml of HCl (37%) and the mixture is stirred until homogeneous for 20 min under room temperature, then filtered using filter paper. Then, the solution was mixed with 2.8 g of CoCl<sub>2</sub> and 1.9 g of NiCl<sub>2</sub> which have been dissolved with 30 ml of distilled water. After the mixed solution is dropped into 16 g of NaOH solution. This synthesis process is carried out at a temperature of 100°C and the solution was precipitated and washed, then the sample was dried in the oven for 15 h at a temperature of 100°C until the powder was evaluated. The powder was calcined at a temperature of 700°C for 1 h with a heating rate of 10 °C/min. The sample was characterized by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopes (FE-SEM), the room temperature hysteresis loops were measured by Vibrating Sample Magnetometer (VSM) then to determine metal content with heavy metal used Atomic Absorption Spectrophotometer (AAS).

#### 3. Results and Discussion

The X-Ray diffraction (XRD) of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> has been obtained in Figure 1. The diffraction peaks match with JCPDS card 22-1086. Figure 1 shows six peaks and well-defined reflection planes of (220), (311), (400), (422), (511), and (400) at the 2 $\theta$  values of 30.12°, 35.57°, 43.29°, 53.71°, and 62.72°.



Figure 1. XRD Pattern of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub>

According to Figure 1's peaks, impurities don't have a diffraction peak. A single phase without a secondary phase is depicted in the formation in Figure 1. The findings are consistent with the absence of a secondary phase in cobalt-nickel ferrite due to the differing atomic radius of cobalt and nickel [11]. Based on previous research, the actual cation distribution by calculating the intensity ratio, (220), (400), and (440) planes have been considered, as these are in good condition to the cation distribution [12]–[14]. The intensity of the (220) and (440) planes shows on the cations on tetrahedral sites [15] and the (400) plane depends on that of the octahedral site [16], [17]. The morphology of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> is evaluated in Figure 2. The grain size distribution histogram was then calculated from the Field Emission Scanning Electron Microscope (FE-SEM) findings using Image-J software.



Figure 2. (a) Morphological structure and (b) distribution histogram of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> FE-SEM results as in Figure 2 the shape of the nanoparticles is almost spherical. The average particle size of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> is found with a range of 80 to 120 nm. FE-SEM image shows some of the agglomerations. Agglomeration phenomena are caused by chemical reactions during the synthesis of raw materials. [18]. Agglomeration results from contamination of the source material during the stirring process.



Figure 3. EDX spectra of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub>

The elemental composition evaluation has been carried out using energy dispersive X-ray (EDX) spectra, attached with FESEM. The EDX spectra for Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> are shown in Figure 3. The peaks of Fe, Ni, Co, and O elements as in Figure 3 with variations of weight %. The ratio of iron to oxygen (Fe:O) and the chemical composition of metal ions (Co: Ni) in the spectra were both in accordance with the predicted composition ratio [19], without traces of any impurity element and that confirms the single phase purity of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub>.

Magnetic characterization of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> has been evaluated using Vibrating Sample Magnetometer (VSM) and is shown in Figure 4. From the hysteresis loop, the saturation magnetization (Ms) of 34.46 emu/g, remanent magnetization (Mr) of 14.91 emu/g, and coercivity (Hc) of 671.58 Oe, respectively.



Figure 4. Hysteresis loop of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub>

These results suggested that soft magnetic material based on coercivity (Hc) of 671.58 Oe at  $Co_{0.7}Ni_{0.3}Fe_2O_4$  whereas Debnath et al [12] reported that  $Ni_{0.5}Co_{0.5}Fe_2O_4$  of 1003 Oe. It is suggested that the coercitivity value increases with the same condition as the molar ratio of cobalt and nickel. Nanoparticle powder  $Co_{0.7}Ni_{0.3}Fe_2O_4$  in this characterization will be used to absorb heavy metal waste. The heavy metal used is lead ion  $Cu^{2+}$  and  $Cr^{3+}$ . Heavy metal powder  $Cu^{2+}$  and  $Cr^{3+}$  first dissolved with Aquadest until it becomes a solution. Then the nanoparticle powder  $Co_{0.7}Ni_{0.3}Fe_2O_4$  was mixed with heavy metal solution  $Cu^{2+}$  and  $Cr^{3+}$  and shaken for 30 minutes. The results of the mixing in the form of a liquid were analyzed to determine how much the nanoparticles' adsorption capacity was  $Co_{1-x}Ni_xFe_2O_4$  against heavy metal waste  $Cu^{2+}$  and  $Cr^{3+}$ . The formula to determine the adsorption capacity and removal efficiency :

$$q = \frac{Co - Ce}{w}$$
(1)  
% 
$$R = \frac{Co - Ce}{Co} 100\%$$
(2)

with:

q = Adsorption capacity (mg/L) Co = initial concentration (mg/L) Ce = Final concentration (mg/L) W = mass of magnetic powder (grams) V= waste volume (L) R= Removal Efficiency (%)

Results of Atomic Absorption Spectrophotometer (AAS) on  $Co_{0.7}Ni_{0.3}Fe_2O_4$  based on formula (1) and (2) is concentration total, Cr of 22.5 mg/L, concentration ion Cr absorbed of 0.03 mg/L, removal efficiency of 99.86 % with capacity adsorption of 11.23 mg/L.

## 4. Conclusion

The co-precipitation method was used to study the structural, morphology, and magnetic characteristics of cobalt nickel ferrite for use as a heavy metal adsorbent in Cu, Cr material. The characterization was evaluated by XRD, FE-SEM, EDX, VSM, and AAS. XRD study that the six peaks and well-defined reflection planes of (220), (311), (400), (422), (511), and (400) at the 20 values of 30.12°, 35.57°, 43.29°, 53.71°, and 62.72° and there is no secondary phase in cobalt-nickel ferrite. The ferrite nanoparticle's almost spherical shape was confirmed by FE-SEM characterization. The average particle size of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> is found with a range of 80 to 120 nm. The peaks of Fe, Ni, Co, and O elements as energy dispersive X-Ray (EDX) spectra studied the ratio of chemical composition of metal ions (Co: Ni) and iron to oxygen (Fe:O), The magnetic properties from VSM results evaluated that Ms of 34.46 emu/g, Mr of 14.91 emu/g, Hc of 671.58 Oe, respectively. Correspondingly, AAS results in removal efficiency of 99.86 % with capacity adsorption of 11.23 mg/L of Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub>. These results that Co<sub>0.7</sub>Ni<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> was good material for Heavy Metal Absorbent in Cu, Cr.

#### 5. Acknowledgments

The authors acknowledge the facilities, scientific and technical support from Universitas Sumatera Utara by Talenta Research 2022 of National Collaboration Research in World Class University (WCU) Scheme with contract number 357/UN5.2.3.1/PPM/KP-TALENTA/2022 and Advanced Characterization Laboratories Serpong, National Research and Innovation Agency through E-Layanan Sains, Badan Riset dan Inovasi Nasional.

#### 6. References

- [1] N. K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K. S. Kim, and M. Saifuddin, "Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) Nanoparticles at Neutral pH," *Sci. Rep.*, 2020.
- [2] Anu, "Magnetic and dielectric studies on Zn doped Mg ferrites (MgZn x Fe 2-x O 4 ) nanofabricated using the self-combustion method," 2017.
- [3] V. K. Chakradhary, A. Ansari, and M. J. Akhtar, "Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications," *J. Magn. Magn. Mater.*, 2019.
- [4] S. Debnath and R. Das, "Cobalt doping on nickel ferrite nanocrystals enhance the microstructural and magnetic properties: Shows a correlation between them," *J. Alloys Compd.*, 2021.
- [5] M. A. Almessiere et al., "Effects of Ce-Dy rare earths co-doping on various features of Ni-

Co spinel ferrite microspheres prepared via hydrothermal approach," J. Mater. Res. Technol., 2021.

- [6] M. A. Almessiere *et al.*, "Ce–Nd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties," *Ceram. Int.*, 2019.
- [7] C. Aziz and B. Azhdar, "Synthesis of dysprosium doped cobalt ferrites nanoparticles by solgel auto-combustion method and influence of grinding techniques on structural, Morphological, and magnetic properties," J. Magn. Magn. Mater., 2022.
- [8] M. A. Almessiere *et al.*, "Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2-xO4 nano-spinel ferrites," *Ultrason. Sonochem.*, 2019.
- [9] M. Rianna *et al.*, "Effect of calcination temperature on Microstructures, magnetic properties, and microwave absorption on BaFe 11.6 Mg 0.2 Al 0.2 O 19 synthesized from natural iron sand," *Case Stud. Therm. Eng.*, vol. 13, 2019.
- [10] H. Abdolmohammad-Zadeh, Z. Ayazi, and M. Veladi, "One-pot synthesis of nickel oxide/nickel ferrite nanocomposite and application to dispersive magnetic solid-phase extraction of zinc(II) ions in water and milk samples," J. Food Compos. Anal., 2022.
- [11] K. M. Srinivasamurthy *et al.*, "Evaluation of structural, dielectric and LPG gas sensing behavior of porous Ce3+- Sm3+ doped Cobalt nickel ferrite," *Mater. Chem. Phys.*, 2022.
- [12] S. Debnath, A. Das, and R. Das, "Effect of cobalt doping on structural parameters, cation distribution and magnetic properties of nickel ferrite nanocrystals," *Ceram. Int.*, 2021.
- [13] B. Nandan, M. C. Bhatnagar, and S. C. Kashyap, "Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations," *J. Phys. Chem. Solids*, 2019.
- [14] P. A. M. Vitor, J. Venturini, J. B. M. da Cunha, and C. P. Bergmann, "The influence of cation distribution on the magnetic properties of mixed Co1-yNiyFe2O4 nanoferrites produced by the sol-gel method," *J. Alloys Compd.*, 2021.
- [15] G. Satyanarayana, K. Vijaya Babu, and G. Nageswara Rao, "Structural, electrical, and magnetic properties of Co-substituted Ni1-xCoxFe2O4 (x = 0.1, 0.2, and 0.3) nanocrystalline ferrites," *Ferroelectrics*, 2021.
- [16] D. B. Pawar, P. P. Khirade, V. Vinayak, L. S. Ravangave, and S. M. Rathod, "Sol-gel autoignition fabrication of Gd3+ incorporated Ni0.5Co0.5Fe2O4 multifunctional spinel ferrite nanocrystals and its impact on structural, optical and magnetic properties," *SN Appl. Sci.*, 2020.
- [17] M. Rianna, T. Sembiring, E. Amiruddin, and P. Sebayang, "Materials Science for Energy Technologies Co-precipitation synthesis of LaFe 1-x Al x O 3 ( $x = 0 0 \cdot 2$ ) on structure and electromagnetic properties," vol. 6, pp. 43–47, 2023.

- [18] T. Zeeshan, S. Anjum, S. Waseem, F. Majid, M. Danish Ali, and A. Aslam, "Influence of zinc substitution on structural, elastic, magnetic and optical properties of cobalt chromium ferrites," *Mater. Sci. Pol.*, 2021.
- [19] A. Karimian, M. S. Rad, and E. Mahdavi, "CoNiFe2O4@Silica-SO3H nanoparticles: New recyclable magnetic nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)ones/thiones under solvent-free conditions," J. Chinese Chem. Soc., 2020.

# Prosiding Internasional, sudah submit ke ICCST USU 2022

| • 🗆 - < >                     | 0                           | i∰ locali usu ac ld             | ී අති               | <u>۵</u> +                 |
|-------------------------------|-----------------------------|---------------------------------|---------------------|----------------------------|
|                               |                             |                                 |                     |                            |
|                               |                             |                                 |                     | 221                        |
| The 2                         | <sup>nd</sup> International | Conference on Chemi             | cal Science and     | Technology 2022            |
|                               | "Chemic                     | al Science and Technolog        | y for Better and Fu | ture"                      |
|                               |                             |                                 |                     |                            |
|                               |                             |                                 |                     |                            |
| HOME USER HOME                | ARCHIVE CALL FOR PAPE       | R. REGISTRATION FEE             |                     | VENUE                      |
| Home > User > Author > Active | Suterilasitava              |                                 |                     |                            |
| Active Submiss                | sions                       |                                 |                     |                            |
| ACTIVE ARCHIVE                |                             |                                 |                     |                            |
| MM-DD                         |                             | 21 IIII II 21 IX 20 IX 20 III 3 |                     | THE PARTY AND IN           |
| ID SUBMIT                     | TRACK AUTHORS               | TITLE                           | STATUS              | and the second             |
| 18967 11-29                   | MSN Rianna                  | STRUCTURAL AND MAGNETIC         | Awaiting assignment | Hotel Grandhika Setiabudi  |
|                               |                             | USING                           |                     | Jl. Setiabudi No.169 Medan |
| 1 - 1 of 1 items              |                             |                                 |                     | IMPORTANT DATE             |
| Start here to submit a        | paper to this conference.   |                                 |                     | Abstract Submission        |
| STEP ONE OF THE SUB           | BMISSION PROCESS            |                                 |                     | May 17 November 36, 2022   |

# Prosiding Internasional untuk ICCST USU 2022

#### Structural and Magnetic Studies of Co0.8Ni0.2Fe2O4 using Co-precipitation Method

Martha Rianna<sup>1</sup>, Aknes Talanda<sup>1</sup>, Yoga Pratama<sup>1</sup>, Eko Arief Setiadi<sup>2</sup>, Anggito P. Tetuko<sup>2</sup>, Lukman Faris Nurdiyansah<sup>2</sup>, Syahrul Humaidi<sup>1</sup>, Timbangen Sembiring<sup>1</sup>, Perdamean Sebayang<sup>2</sup> <sup>1</sup>Universitas Sumatera Utara, Medan, 20155, Indonesia

<sup>2</sup>Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Banten, 15314, Indonesia

\*corresponding author: martharianna@usu.ac.id

#### Abstract

In this research, synthesis of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> has been conducted using co-precipitation method with calcined at 900°C for 2 h. The sample were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) and Vibrating Sample Magnetometer (VSM) to confirm structural and magnetic studies. The XRD results shows the peaks can be indexed as (220), (311), (400), (422), (511), and (440). SEM-EDX results shows the sample has unifom particle size with average of 1  $\mu$ m. The variation of saturation magnetization (Ms) of 37.54 emu/g, remanence magnetization (Mr) of 17.31 emu/g, coercive field (Hc) of 747.25 Oe and squareness of hysteresis loop (Mr/Ms) of 0.46, respectively. Keywords: Structural, Magnetic Studies, Hysteresis Loop

### 1. Introduction

The ferrite magnetic particles are good material and unique physical peculiarities like structural and magnetic properties [1]. They are also technologically important materials as they are widely utilized in magnetic permanent material, absorbing microwave and electronic devices [2], [3]. The properties of cobalt and nickel ferrites can be greatly influenced by doping nickel atoms and cobalt atoms [4]. Ferrites can be prepared by various methods including sol-gel method, co-precipitation method, hydrothermal method, solid state reaction, precursor method etc [5]–[7]. Iron sand is a potential natural resource in Indonesia. Iron sand has four phases: maghemite ( $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>), hematite ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>), goethite (FeO(OH)) and magnetic (Fe<sub>3</sub>O<sub>4</sub>). Of the four phases, only maghemite ( $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>) and magnetite (Fe<sub>3</sub>O<sub>4</sub>) have magnetic properties and besides that magnetic (Fe<sub>3</sub>O<sub>4</sub>) is also amphoteric and has high absorption [8]. The magnetite compound is black with a spinel structure and contains Fe<sup>2+</sup> and Fe<sup>3+</sup> ions. Iron sand has the potential to be made of nanometer-sized of Fe<sub>3</sub>O<sub>4</sub> [9]–[11]. In this research, the preparation and characterization of Fe<sub>3</sub>O<sub>4</sub> synthesized from natural iron sand will be made using the co-precipitation method.

### 2. Materials and Methods

Doped cobalt nickel ferrite powders were synthesized by iron sand using co precipitation method with NaOH as the main precursors. The main precursor was dissolved in 100 ml deionized water taken in a hotplate. Then stoichiometric amounts of iron sand, nickel chloride and cobalt chloride were added into the HCl solution. NaOH solution was added with continuous stirring for 2 hours at 100°C. The solution containing powders of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> was removed by washing with

water and ethanol. The resultant powder was dried in the oven for 24 hours at 100°C. The resulting powder was calcined at 900°C for 2 hours. The sample were characterized using XRD, SEM-EDS and VSM to confirm structural and magnetic studies.

# 3. Results and Discussion

The characterization of X-ray diffraction (XRD) of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> are shown in Figure 1. XRD pattern observed that Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> crystallize in cubic spinel morphology of Fd3m space group. The peaks can be indexed as (220), (311), (400), (422), (511), and (440), respectively. All peaks are in diffraction patterns with JCPDS Card Number 22-1086.



Figure 1. XRD Patterns of Co0.8Ni0.2Fe2O4 sample

Based from Figure 1, cobalt content has been substitution to nickel content. It is indication that substitution of Ni<sup>2+</sup> with a smaller ionic radius (0.69 Å) whereas Co<sup>2+</sup> with a larger ionic radius (0.74 Å) [12]. SEM-EDS results of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> are shown in Figure 2 and Table 1.



Figure 2. SEM image of Co0.8Ni0.2Fe2O4 sample

| Table 1. The element of Co <sub>0.8</sub> Ni <sub>0.2</sub> Fe <sub>2</sub> O <sub>4</sub> sample |      |  |  |  |
|---------------------------------------------------------------------------------------------------|------|--|--|--|
| Element                                                                                           | At%  |  |  |  |
| 0                                                                                                 | 55.7 |  |  |  |
| Fe                                                                                                | 37.5 |  |  |  |
| Со                                                                                                | 5.6  |  |  |  |
| Ni                                                                                                | 1.2  |  |  |  |

From Figure 2 shows that the sample has unifom particle size with average of 1  $\mu$ m. It show that the other particle content several structural. This is also to substitution of Co and Ni contents as additive concentrations at Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub>. The magnetic studies can be seen in Figure 3. Figure 3 shows room temperature M-H loops of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub>.



Figure 3. M-H loops of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> sample

Figure 3 shows variation of saturation magnetization (Ms) of 37.54 emu/g, remanence magnetization (Mr) of 17.31 emu/g, coercive field (Hc) of 747.25 Oe and squareness of hysteresis loop (Mr/Ms) of 0.46. Velhal et al [13] suggested that the coercivity field with metal logam as Ni and Co can be confirmed on the strain, magneto crystallite anisotropy and shape anisotropy of crystallite structure.

#### 4. Conclusion

The synthesis of Co<sub>0.8</sub>Ni<sub>0.2</sub>Fe<sub>2</sub>O<sub>4</sub> material has been conducted using co-precipitation method. The sample were characterized using XRD, SEM-EDS and VSM to confirm structural and magnetic studies. The XRD results shows the peaks can be indexed as (220), (311), (400), (422), (511), and (440). SEM-EDX results shows the sample has unifom particle size with average of 1  $\mu$ m. The variation of saturation magnetization (Ms) of 37.54 emu/g, remanence magnetization (Mr) of

17.31 emu/g, coercive field (Hc) of 747.25 Oe and squareness of hysteresis loop (Mr/Ms) of 0.46, respectively.

# 5. Acknowledgments

The authors acknowledge the facilities, scientific and technical support from Universitas Sumatera Utara by Talenta Research 2022 of National Collaboration Research in World Class University (WCU) Scheme with contract number 357/UN5.2.3.1/PPM/KP-TALENTA/2022 and Advanced Characterization Laboratories Serpong, National Research and Innovation Agency through E-Layanan Sains, Badan Riset dan Inovasi Nasional.

# 6. References

- [1] H. W. Zhang, J. Li, H. Su, T. C. Zhou, Y. Long, and Z. L. Zheng, "Development and application of ferrite materials for low temperature co-fired ceramic technology," *Chinese Physics B*. 2013.
- [2] U. Younas, M. Bilal, and J. Ren, "Diversity of exact solutions and solitary waves with the influence of damping effect in ferrites materials," *J. Magn. Magn. Mater.*, 2022.
- [3] B. Swain, J. Halder, N. Swain, P. P. Nayak, and S. Bhuyan, "Performance improvement of inductive coupling system using ferrite materials," in *Materials Today: Proceedings*, 2021.
- [4] A. Mesbahinia, M. Almasi-Kashi, A. Ghasemi, and A. Ramezani, "First order reversal curve analysis of cobalt-nickel ferrite," *J. Magn. Magn. Mater.*, 2019.
- [5] M. Rianna *et al.*, "The effect of Mg-Al additive composition on microstructure, magnetic properties, and microwave absorption on BaFe<inf>12-2x</inf>Mg<inf>x</inf>Al<inf>x</inf>O<inf>19</inf> (x = 0-0.5) material synthesized from natural iron sand," *Mater. Lett.*, vol. 256, 2019.
- [6] F. Majid *et al.*, "Cobalt doping of nickel ferrites via sol gel approach: Effect of doping on the structural and dielectric properties," *Zeitschrift fur Phys. Chemie*, 2021.
- [7] X. Chen, Y. Wang, H. Liu, S. Jin, and G. Wu, "Interconnected magnetic carbon@NixCo1xFe2O4 nanospheres with core–shell structure: An efficient and thin electromagnetic wave absorber," *J. Colloid Interface Sci.*, 2022.
- [8] J. K. Xu, F. F. Zhang, J. J. Sun, J. Sheng, F. Wang, and M. Sun, "Bio and nanomaterials based on Fe3O4," *Molecules*. 2014.
- [9] Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren, and L. Zuo, "Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification," *Sep. Purif. Technol.*, 2009.
- [10] A. N. Syahida, H. Sutanto, I. Alkian, F. D. D. Irianti, A. A. Wibowo, and P. Priyono, "Synthesized and characterization nanosized synthesis Fe3O4powder from natural iron sand," in *Journal of Physics: Conference Series*, 2021.
- [11] E. Handoko *et al.*, "Structural, magnetic and microwave absorption properties of natural iron sand," in *Journal of Physics: Conference Series*, 2021.
- [12] C. Kumari, H. K. Dubey, F. Naaz, and P. Lahiri, "Structural and optical properties of nanosized Co substituted Ni ferrites by coprecipitation method," *Phase Transitions*, 2020.
- [13] N. B. Velhal, N. D. Patil, A. R. Shelke, N. G. Deshpande, and V. R. Puri, "Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration," *AIP Adv.*, 2015.